[1]司原成,任晨晨,康朝霞,等.肠道短链脂肪酸与单纯性肥胖症形成的关系及其机制[J].肠外与肠内营养杂志,2022,(02):121-125.[doi:DOI : 10.16151/j.1007-810x.2022.02.012]
 SI Yuan-cheng,REN Chen-chen,KANG Zhao-xia,et al.The formation relationship and mechanism between intestinal short chain fatty acids and simple obesity[J].PARENTERAL & ENTERAL NUTRITION,2022,(02):121-125.[doi:DOI : 10.16151/j.1007-810x.2022.02.012]
点击复制

肠道短链脂肪酸与单纯性肥胖症形成的关系及其机制
分享到:

《肠外与肠内营养》杂志[ISSN:1007-810X/CN:32-1477/R]

卷:
期数:
2022年02期
页码:
121-125
栏目:
综述
出版日期:
2022-03-10

文章信息/Info

Title:
The formation relationship and mechanism between intestinal short chain fatty acids and simple obesity
作者:
司原成任晨晨康朝霞张二伟莫曦雅陈 波
贵州中医药大学针灸推拿学院,贵州贵阳 550025
Author(s):
SI Yuan-cheng REN Chen-chen KANG Zhao-xia ZHANG Er-wei MO Xi-ya CHEN Bo
College of Acupuncture and Tuina, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
关键词:
短链脂肪酸 肠道菌群 单纯性肥胖症 “脑-肠-菌”轴
Keywords:
Short-chain fatty acids Intestinal flora Simple obesity "Brain-gut-bacteria" axis
分类号:
R459.3
DOI:
DOI : 10.16151/j.1007-810x.2022.02.012
文献标志码:
A
摘要:
目前,单纯性肥胖症严重影响人们的生活质量,是社会重大健康问题之一。最新研究表明单纯性肥胖症的形成发展与肠道短链脂肪酸的合成及代谢密切相关。肠道短链脂肪酸由肠道菌群代谢合成,参与宿主能量代谢、肠黏膜免疫应答等环节,是机体糖脂代谢的重要方面之一。本文将从短链脂肪酸(SCFAs)与单纯性肥胖的概述、SCFAs作用的靶点与受体、SCFAs调整单纯性肥胖症的作用机制、益生元/益生菌调整 SCFAs治疗单纯性肥胖症等方面展开论述,为临床攻克肥胖等代谢性疾病提供新的治疗思路。
Abstract:
At present, simple obesity seriously affects people's quality of life and is one of the major health problems in society. The latest research shows that the formation and development of simple obesity is closely related to the synthesis and metabolism of intestinal short-chain fatty acids (SCFAs). Intestinal short-chain fatty acids are metabolized and synthesized by the intestinal flora, and participate in host energy metabolism and intestinal mucosal immune response. They are one of the important aspects of the body's glucose and lipid metabolism. This review will discuss the overview of SCFAs and simple obesity, the targets and receptors of SCFAs, the mechanism of SCFAs on regulating simple obesity, and the adjustment of SCFAs by prebiotics/probiotics in the treatment of simple obesity. We hope this review could provide new treatment ideas for clinically overcoming metabolic diseases such as obesity

参考文献/References:


[1] Guazzelli Marques C, de Piano Ganen A, Zaccaro de Barros A, et al. Weight loss probiotic supplementation effect in overweight and obesity subjects: A review. Clin Nutr, 2020, 39(3):694-704.
[2] Saklayen MG. The global epidemic of the metabolic syndrome.Curr Hypertens Rep, 2018, 20(2):12.
[3] Lu J, Wang L, Li M, et al. Metabolic syndrome among adults in China: the 2010 China noncommunicable disease surveillance. J Clin Endocr Metab, 2017, 102(2):507-515.
[4] 刘金钢 . 减重手术术式选择及对机体代谢的调节 . 肠外与肠内营养, 2020,27(1):1-4.
[5] Wan Y, Wang F, Yuan J, et al. Effects of dietary fat on gut microbiota and faecal metabolites,and their relationship with cardiometabolic risk factors: a 6-month randomised controlledfeeding trial. Gut, 2019, 68(8):1417-1429.
[6] 司原成, 苗维纳, 何嘉悦, 等 . 肥胖-肠道菌群-Toll样受体交互调控作用的研究进展 . 世界华人消化杂志, 2016, 24(15): 2361-2367.
[7] Valdes AM, Walter J, Segal E, et al. Role of the gut microbiota in nutrition and health. BMJ, 2018, 361, k2179.
[8] Lim MY, You HJ, Yoon HS, et al. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. Gut,2017, 66(6):1031-1038.
[9] 王 洋, 周礼红 . 肥胖人群肠道菌群多样性研究 . 贵州大学学报(自然科学版), 2018, 35(04): 47-53.
[10] Breuninger TA, Wawro N, Breuninger J, et al. Associations between habitual diet, metabolic disease, and the gut microbiota using latent Dirichlet allocation. Microbiome, 2021, 9(1):61.
[11] Zawada A, Rychter AM, Ratajczak AE, et al. Does gutmicrobiome interaction protect against obesity and obesityassociated metabolic disorders. Microorganisms, 2020, 9(1):18.
[12] Al Bander Z, Nitert MD, Mousa A, et al. The Gut Microbiota and Inflammation: An Overview. Int J Environ Res Public Health, 2020, 17(20): 7618.
[13] Si YC, Miao WN, He JY, et al. Regulating gut flora dysbiosis in obese mice by electroacupuncture. Am J Chin Med, 2018, 46(7):1-17.
[14] Zhi C, Huang J, Wang J, et al. Connection between gut microbiome and the development of obesity. Eur J Clin Microbiol Infect Dis, 2019, 38(11): 1987-1998.
[15] Czajkowska A, Ka?mierczak-Siedlecka K, Jamio?-Milc D, et al. Gut microbiota and its metabolic potential. Eur Rev Med Pharmacol Sci, 2020,24(24):12971-12977.
[16] 胡民万, 扈金萍 . 短链脂肪酸与代谢性疾病相关性的研究进展 . 国际药学研究杂志, 2020,47(11):881-886.
[17] 刘 倩, 陈 成, 辛 鑫, 等 . 短链脂肪酸对高脂饮食诱导肥胖小鼠糖脂代谢紊乱的影响 . 肝脏, 2018, 23(7):591-595.
[18] Natarajan N, Horid D, Flavahan S, et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol Genomics, 2016, 48 (11) :826-834.
[19] Karaki S, Tazoe H, Hayashi H, et al. Expression of the shortchain fatty acid receptor, GPR43, in the human colon. J Mol Histol, 2008, 39(2): 135-142.
[20] Amabebe E, Robert FO, Agbalalah T, et al. Microbial dysbiosisinduced obesity: role of gut microbiota in homeostasis of energy metabolism. Br J Nutr, 2020, 123(10):1127-1137.
[21] Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 2013, 504(7480):451-455.
[22] Ruting S, Xenaki D, Malouf M, et al. Short-chain fatty acids increase TNFα -induced inflammation in primary human lung mesenchymal cells through the activation of p38 MAPK . Am J PhysiolLung Cell Mol Physiol, 2019, 316(1) : L157-L174.
[23] Rodriguez J, Neyrinck AM, hang Z, et al. Metabolite profiling reveals the interaction of chitin-glucan with the gut microbiota. Gut Microbes, 2020, 12(1): 1810530.
[24] Vatanen T, Franzosa EA, Schwager R, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature, 2018,562(7728):589-594.
[25] Fang WJ, Xue HL, Chen X, et al. Supplementation with sodium butyrate modulates the composition of the gut microbiota and ameliorates high-fat diet-induced obesity in mice. J Nutr, 2019,149(5):747-754.
[26] Kurta N, Tokashiki N, Fukushima K, et al. Short chain fatty acid butyrate uptake reduces expressions of prostanoid EP4 receptors and their mediation of cyclooxygenase-2 induction in HCA-7 human co-lon cancer cells. Eur J Pharmacol, 2019, 853: 308-315.
[27] Li X, Guo J, Ji K, et al. Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota. Sci rep, 2016, 6: 32953.
[28] Murugesan S, Nirmalkar K, Hoyo-vadillo C, et al. Gut microbiome production of short-chain fatty acids and obesity in children. Eur J Clin Microbiol Infect Dis, 2017,37(4):621-625.
[29] Dayib M, Larson J, Slavin J. Dietary fibers reduce obesity-related disorders mechanisms of action. Curr Opin Clin Nutr Metab Care, 2020, 23(6): 445-450.
[30] Kivimki M, Kuosma E, Ferrie JE, et al. Overweight, obesity, and risk of cardiometabolic multimorbidity: pooled analysis of individual-level data for 120 813 adults from 16 cohort studies from the USA and Europe. Lancet Public Health, 2017, 2(6):277-285.
[31] 司原成, 王晓芳, 汪弋力, 等 . 营养性肥胖之免疫机制研究进展 . 中国实验方剂学杂志, 2016, 22(9): 230-234.
[32] Aktar R, Parkar N, Stentz R, et al. Human resident gut microbe bacteroides thetaiotaomicron regulates colonic neuronal innervation and neurogenic function. Gut Microbes, 2020, 11(6):1745-1757.
[33] Christiansen CB, Nordskov MB, Svendsen B, et al. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am J Physiol Gastrointest Liver Physiol, 2018, 315(1): G53-G65.
[34] Leong KSW, Jayasinghe TN, Derraik JGB, et al. Protocol for the gut bugs trial: a randomised double-blind placebo-controlled trial of gut microbiome transfer for the treatment of obesity in adolescents. BMJ open, 2019, 9(4):026174.
[35] Yaribeygi H, Farrokhi FR, Butler AE, et al. Insulin resistance: review of the underlying molecular mechanisms. J Cell Physiol,2019, 234(6):8152-8161.
[36] Larraufie P, Martin-Gallausiaux C, Lapaque N, et al. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci Rep, 2018, 8(1):74.
[37] Jin X, Guan Y, Bai H, et al. Effects of sEA on slow transit constipation through the Microbiota-Gut-Brain axis in rats. Evid Based Complement Alternat Med, 2020, 2020: 8828846.
[38] Pascale A, Marchesi N, Govoni S, et al. The role of gut microbiota in obesity,diabetes mellitus,and effect of metformin: new insights into old diseases. Curr Opin Pharmacol, 2019, 49:1-5.
[39] Holmes ZC, Silverman JD, Dressman HK, et al. Short-chain fatty acid production by gut microbiota from children with obesity differs according to prebiotic choice and bacterial community composition. MBio, 2020, 11(4): e914-e920.
[40] Cani PD, Van Hul M, Lefort C, et al. Microbial regulation of organismal energy homeostasis. Nat Met, 2019, 1(1):34-46.
[41] Blaak EE, Canfora EE, Theis S, et al. Short chain fatty acids in human gut and metabolic health. Benef Microbes, 2020, 11(5): 411-455.
[42] Martinez-Guryn K, Hubert N, Frazier K, et al. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell Host Microbe, 2018, 23(4):458-469.
[43] Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab, 2015, 26(9): 493-501.
[44] Steinert RE, Beglinger C, Langhans W. Intestinal GLP-1 and satiation-from man to rodents and back. Int J Obes (Lond), 2015, 40(2):198-205.
[45] Duca FA, Yue TY. Fatty acid sensing in the gut and the hypothalamus: in vivo and in vitro perspectives. Mol Cell Endocrinol, 2014, 397(1-2): 23-33.
[46] Liu R, Hong J, Xu X, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med, 2017, 23(7): 859-868.
[47] Thursby E, Juge N. Introduction to the human gut microbiota.Biochem J, 2017, 474(11): 1823-1836.
[48] 葛晓龙, 丁 超, 李 宁, 等 . 粪菌移植改善肥胖和糖尿病病人的研究进展 . 肠外与肠内营养, 2015, 22(6):370-373.
[49] Liu S, Li E, Sun Z, et al. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci Rep, 2019, 9(1) : 287.

相似文献/References:

[1]王科皓.短链脂肪酸与克罗恩病的研究进展[J].肠外与肠内营养杂志,2019,(06):366.[doi:10.16151/j.1007-810x.2019.06.011]
 WANG Ke-hao,ZHU Wei-ming.Advances in the role of short-chain fatty acids in Crohn's disease[J].PARENTERAL & ENTERAL NUTRITION,2019,(02):366.[doi:10.16151/j.1007-810x.2019.06.011]
[2]罗 绰,等.肠道菌群与结直肠癌研究进展[J].肠外与肠内营养杂志,2019,(06):377.[doi:10.16151/j.1007-810x.2019.06.013]
 LUO Chuo,HUANG Ming-jun,WANG Yi-lin,et al.Advances in relation of intestinal flora and colorectal cancer[J].PARENTERAL & ENTERAL NUTRITION,2019,(02):377.[doi:10.16151/j.1007-810x.2019.06.013]
[3]尹天翊,郝占西,王国盼,等.益生元改善慢性代谢性疾病的研究进展[J].肠外与肠内营养杂志,2022,(04):237.[doi:10.16151/j.1007-810x.2022.04.008]
 YIN Tian-yi,HAO Zhan-xi,WANG Guo-pan,et al.Research progress of prebiotics in improving chronic metabolic diseases[J].PARENTERAL & ENTERAL NUTRITION,2022,(02):237.[doi:10.16151/j.1007-810x.2022.04.008]
[4]吴冰悦,赵武杰,贾漪涛.后生元的临床应用价值及前景展望[J].肠外与肠内营养杂志,2022,(04):242.[doi:10.16151/j.1007-810x.2022.04.009]
 WU Bing-yue,ZHAO Wu-jie,JIA Yi-tao.The clinical application value and prospect of postbiotics[J].PARENTERAL & ENTERAL NUTRITION,2022,(02):242.[doi:10.16151/j.1007-810x.2022.04.009]
[5]唐玉秀,韦 瑶,金 钧.肠-肺轴以及粪菌移植在脓毒症中的作用[J].肠外与肠内营养杂志,2023,(03):179.[doi:10.16151/j.1007-810x.2023.03.010]
 TANG Yu-xiu,WEI Yao,JIN Jun.Function of gut-lung axis and fecal bacteria transplantation in sepsis[J].PARENTERAL & ENTERAL NUTRITION,2023,(02):179.[doi:10.16151/j.1007-810x.2023.03.010]
[6]石培洁,冯 健,胡 健,等.基于“肠-肌轴”的营养干预在 ICU 获得性衰弱治疗的研究进展[J].肠外与肠内营养杂志,2023,(04):249.[doi:DOI : 10.16151/j.1007-810x.2023.04.010]
 SHI Pei-jie,FENG Jian,HU Jian,et al.Progress of nutritional interventions based on the "gut-muscle axis" inthe treatment of acquired weakness in the ICU[J].PARENTERAL & ENTERAL NUTRITION,2023,(02):249.[doi:DOI : 10.16151/j.1007-810x.2023.04.010]
[7]贾 茹,魏世杰,陈文华,等.艾司奥美拉唑对大鼠肠道菌群结构组成的影响[J].肠外与肠内营养杂志,2023,(06):375.[doi:DOI : 10.16151/j.1007-810x.2023.06.010]
 JIA Ru,WEI Shi-jie,CHEN Wen-hua,et al.Effect of esomeprazole on intestinal microbiota structure and composition in rats[J].PARENTERAL & ENTERAL NUTRITION,2023,(02):375.[doi:DOI : 10.16151/j.1007-810x.2023.06.010]
[8]方 淼.膳食纤维之于肿瘤:诱发还是预防[J].肠外与肠内营养杂志,2019,(01):24.[doi:10.16151/j.1007-810x.2019.01.011]

备注/Memo

备注/Memo:
基金项目 :国家自然科学基金项目(81860775);贵州省中医药管理局中医药、民族医药科学技术研究课题(QZYY-2021-037);贵州省卫 生健康委科学技术基金项目(gzwkj2022-005);贵州省基础研究(科学技术基金)项目(黔科合基础-ZK[2022]一般 484) 作者简介 :司原成,副教授,医学博士,从事刺灸推拿的基础与临床应用研究。E-mail:siyuancheng039@gzy.edu.cn 通讯作者 :陈 波,E-mail:1437936237@qq.com
更新日期/Last Update: 1900-01-01