[1]韩 军,萨思进,吴国豪.癌性恶病质脂肪丢失的分子机制研究进展[J].肠外与肠内营养杂志,2022,(01):51-56.[doi:DOI : 10.16151/j.1007-810x.2022.01.010]
 HAN Jun,SA Si-jin,WU Guo-hao.Research progress on molecular mechanism of fat loss in cancer cachexia[J].PARENTERAL & ENTERAL NUTRITION,2022,(01):51-56.[doi:DOI : 10.16151/j.1007-810x.2022.01.010]
点击复制

癌性恶病质脂肪丢失的分子机制研究进展
分享到:

《肠外与肠内营养》杂志[ISSN:1007-810X/CN:32-1477/R]

卷:
期数:
2022年01期
页码:
51-56
栏目:
综述
出版日期:
2022-01-10

文章信息/Info

Title:
Research progress on molecular mechanism of fat loss in cancer cachexia
作者:
韩 军萨思进吴国豪
复旦大学附属中山医院普通外科,上海 200032
Author(s):
HAN Jun SA Si-jin WU Guo-hao
Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
关键词:
癌性恶病质 脂肪丢失 分子机制
Keywords:
Cancer cachexia Fat loss Molecular mechanism
分类号:
R730
DOI:
DOI : 10.16151/j.1007-810x.2022.01.010
文献标志码:
A
摘要:
癌性恶病质状态在癌症病人中普遍存在,但是目前临床医生对癌性恶病质的认识不足且缺乏有效的治疗手段。究其原因是目前对癌性恶病质的发生机制不清楚。肌肉和脂肪丢失是恶病质的重要特征之一。肌肉丢失的机制在既往研究中已经比较多地被讨论,但是脂肪丢失的机制目前研究仍处于起步阶段。本文重点综述了目前癌性恶病质脂肪丢失的相关分子机制研究进展。总体来讲,癌性恶病质脂肪丢失是一个全身各系统综合作用的结果,其中涉及多种机制,包括脂肪合成和脂质储存的抑制、脂肪降解的增强、白色脂肪组织棕色化增强以及系统性炎症增强等。本文旨在通过系统性阐述癌性恶病质脂肪丢失的分子机制为未来临床有效防治癌性恶病质提供理论依据。
Abstract:
Cancer cachexia is common in cancer patients, but clinicians have insufficient understandings of cancer cachexia and lack of effective treatment. The reason is that the mechanism of cancer cachexia is not clear. Muscle and fat loss are both important characteristics of cachexia. The reasons of muscle loss have been extensively discussed, but the mechanism of fat loss is still in its infancy. This paper focuses on the research progress of the molecular mechanism of fat loss in cancer cachexia. In general, the fat loss of cancer cachexia is the result of the comprehensive action of various systems, which may involve a variety of mechanisms, including the reduction of lipid production and deposition, the enhancement of fat degradation, the enhancement of browning of white adipose tissue and the enhancement of systemic inflammation. This review aims to systematically elaborate the molecular mechanism of fat loss in cancer cachexia, and provide a theoretical basis for the effective prevention and treatment of cancer cachexia in the future.

参考文献/References:


[1] Fearon K, Strasser F, Anker SD, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol, 2011, 12(5): 489-495.
[2] 黄 琦,江志伟,黎介寿 . 癌性恶病质的药物治疗与营养支持 .肠外与肠内营养,2004,11(6):377-379.
[3] 吴国豪 . 肿瘤恶病质机制及防治对策 . 肠外与肠内营养,2000,7(3):182-186.
[4] Tisdale MJ. Cachexia in cancer patients. Nat Rev Cancer, 2002, 2(11): 862-871.
[5] Fearon KC, Moses AG. Cancer cachexia. Int J Cardiol, 2002, 85(1): 73-81.
[6] Argiles JM, Busquets S, Stemmler B, et al. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer, 2014, 14(11): 754-762.
[7] Teunissen SC, Wesker W, Kruitwagen C, et al. Symptom prevalence in patients with incurable cancer: a systematic review. J Pain Symptom Manage, 2007, 34(1): 94-104.
[8] Dalal S. Lipid metabolism in cancer cachexia. Ann Palliat Med,2019, 8(1): 13-23.
[9] Feron KC, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab, 2012, 16(2): 153-166.
[10] Willemsen ACH, Degens JHRJ , Baijens LWJ, et al. Early Loss of Fat Mass During Chemoradiotherapy Predicts Overall Survival in Locally Advanced Squamous Cell Carcinoma of the Lung, but Not in Locally Advanced Squamous Cell Carcinoma of the Head and Neck. Front Nutr, 2020, 7:600612.
[11] Kays JK, Shahda S, Stanley M, et al. Three cachexia phenotypes and the impact of fat-only loss on survival in FOLFIRINOX therapy for pancreatic cancer. J Cachexia Sarcopenia Muscle,2018. 9(4): 673-684.
[12] Han J, Tang M, Lu C, et al. Subcutaneous, but not visceral, adipose tissue as a marker for prognosis in gastric cancer patients with cachexia. Clin Nutr, 2021,40(9):5156-5161.
[13] Batista ML, Peres SB, McDonald ME, et al. Adipose tissue inflammation and cancer cachexia: possible role of nuclear transcription factors. Cytokine, 2012, 57(1): 9-16.
[14] Batista ML, Neves RX, Peres SB, et al. Heterogeneous timedependent response of adipose tissue during the development of cancer cachexia. J Endocrinol, 2012, 215(3): 363-373.
[15] Bing C, Russell S, Becket E, et al. Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice. Br J Cancer, 2006, 95(8): 1028-1037.
[16] Tsoli M, Swarbrick MM, Robertson GR. Lipolytic and thermogenic depletion of adipose tissue in cancer cachexia. Semin Cell Dev Biol, 2016, 54: 68-81.
[17] Shi H, Cave B, Inouye K, et al. Overexpression of suppressor of cytokine signaling 3 in adipose tissue causes local but not systemic insulin resistance. Diabetes, 2006, 55(3): 699-707.
[18] Patel HJ, Patel BM. TNF-alpha and cancer cachexia: Molecular insights and clinical implications. Life Sci, 2017, 170: 56-63.
[19] Hauner H, Petruschke T, Russ M, et al. Effects of tumour necrosis factor alpha (TNF alpha) on glucose transport and lipid metabolism of newly-differentiated human fat cells in cell culture. Diabetologia, 1995, 38(7): 764-771.
[20] Rinninger F, Kaiser T, Mann WA, et al. Lipoprotein lipase mediates an increase in the selective uptake of high density lipoprotein-associated cholesteryl esters by hepatic cells in culture. J Lipid Res, 1998, 39(7): 1335-1348.
[21] Kuemmerle NB, Rysman E, Lombardo PS, et al. Lipoprotein lipase links dietary fat to solid tumor cell proliferation. Mol Cancer Ther, 2011, 10(3): 427-436.
[22] Thompson MP, Koons JE, Tan ET, et al. Modified lipoprotein lipase activities, rates of lipogenesis, and lipolysis as factors leading to lipid depletion in C57BL mice bearing the preputial gland tumor, ESR-586. Cancer Res, 1981, 41(8): 3228-3232.
[23] Zaidi N, Lupien L, Kuemmerle NB, et al. Lipogenesis and lipolysis: the pathways exploited by the cancer cells to acquire fatty acids. Prog Lipid Res, 2013, 52(4): 585-589.
[24] Kaderi MA, Kanduri M, Buhl AM,, et al. LPL is the strongest prognostic factor in a comparative analysis of RNA-based markers in early chronic lymphocytic leukemia. Haematologica,2011,96(8):1153-1160.
[25] Fried SK, Zechner R. Cachectin/tumor necrosis factor decreases human adipose tissue lipoprotein lipase mRNA levels, synthesis, and activity. J Lipid Res, 1989, 30(12): 1917-1223.
[26] Arner P, Langin D. Lipolysis in lipid turnover, cancer cachexia,and obesity-induced insulin resistance. Trends Endocrinol Metab, 2014, 25(5): 255-262.
[27] Zechner R, Zimmermann R, Eichmann TO, et al. FAT SIGNALS--lipases and lipolysis in lipid metabolism and signaling. Cell Metab, 2012, 15(3): 279-291.
[28] Das SK, Eder S, Schauer S, et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science, 2011, 333 (6039): 233-238.
[29] Tsoli M, Schweiger M, Vanniasinghe AS, et al. Depletion of white adipose tissue in cancer cachexia syndrome is associated with inflammatory signaling and disrupted circadian regulation.PLoS One, 2014, 9(3): e92966.
[30] Lass A, Zimmermann R, Oberer M, et al. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res, 2011, 50(1): 14-27.
[31] Zuijdgeest-van Leeuwen SD, van den Berg JW, Wattimena JL, et al. Lipolysis and lipid oxidation in weight-losing cancer patients and healthy subjects. Metabolism, 2000, 49(7): 931-936.
[32] Han J, Meng Q, Shen L, et al. Interleukin-6 induces fat loss in cancer cachexia by promoting white adipose tissue lipolysis and browning. Lipids Health Dis, 2018, 17(1): 14.
[33] Silvério R, Lira FS, Oyama LM, et al. Lipases and lipid dropletassociated protein expression in subcutaneous white adipose tissue of cachectic patients with cancer. Lipids Health Dis, 2017,16(1): 159.
[34] Granneman JG, Moore HP, Krishnamoorthy R, et al. Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J Biol Chem, 2009, 284:34538–34544.
[35] Granneman JG, Moore HP, Granneman RL, et al. Analysis of lipolytic protein trafficking and interactions in adipocytes. J Biol Chem, 2007,282:5726–5235.
[36] Subramanian V, Rothenberg A, Gomez C, et al. Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes. J Biol Chem, 2004, 279:42062–42071.
[37] Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev, 2009,89(2): 381-410.
[38] Cabassi A, Tedeschi S. Zinc-alpha2-glycoprotein as a marker of fat catabolism in humans. Curr Opin Clin Nutr Metab Care, 2013,16(3): 267-271.
[39] Peirce V, Carobbio S, Vidal-Puig A. The different shades of fat,Nature, 2014, 510 (7503): 76-83.
[40] Wu J, Bostr?m P, Sparks LM, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human, Cell, 2012, 150: 366-376.
[41] Nedergaard J, Cannon B. The browning of white adipose tissue:some burning issues, Cell metabolism, 2014,20:396-407. ·55·肠外与肠内营养 2022年 1月 第 29卷 第 1期 Parenteral & Enteral Nutrition, Vol.29, No.1, January, 2022
[42] Seale P, Conroe HM, Estall J, et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice, The Journal of clinical investigation, 2011,121 : 96-105.
[43] Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans, The New England journal of medicine, 2009,360 :1509-1517.
[44] Mulya A, Kirwan JP. Brown and Beige Adipose Tissue: Therapy for Obesity and Its Comorbidities? Endocrinology and metabolism clinics of North America, 2016, 45:605-621.
[45] Kir S, White JP, Kleiner S, et al. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia, Nature, 2014,513:100-104.
[46] Holmes D. Metabolism: WAT browning--key feature of cancerassociated cachexia. Nat Rev Endocrinol. 2014, 10(10):578.
[47] Petruzzelli M, Schweiger M, Schreiber R, et al. A switch from white to brown fat increases energy expenditure in cancerassociated cachexia. Cell Metab, 2014, 20(3):433-447.
[48] Jorge AS, Jorge GC, Paraíso AF, et al. Brown and White Adipose Tissue Expression of IL6, UCP1 and SIRT1 are Associated with Alterations in Clinical, Metabolic and Anthropometric Parameters in Obese Humans. Exp Clin Endocrinol Diabetes, 2017, 125(3): 163-170.
[49] Deans C, Wigmore SJ. Systemic inflammation, cachexia and prognosis in patients with cancer. Curr Opin Clin Nutr Metab Care, 2005, 8(3): 265-269.
[50] Porporato PE. Understanding cachexia as a cancer metabolism syndrome. Oncogenesis, 2016, 5(2): e200.
[51] Biswas AK, Acharyya S. Understanding cachexia in the context of metastatic progression. Nat Rev Cancer, 2020, 20(5):274-284.
[52] Han J, Lu C, Meng Q, et al. Plasma concentration of interleukin-6 was upregulated in cancer cachexia patients and was positively correlated with plasma free fatty acid in female patients. Nutr Metab (Lond). 2019, 16:80.
[53] Xu S, Neamati N. gp130: a promising drug target for cancer therapy. Expert Opin Ther Targets, 2013, 17(11): 1303-1328.
[54] Narsale AA, Carson JA. Role of interleukin-6 in cachexia: therapeutic implications. Curr Opin Support Palliat Care, 2014, 8 (4): 321-327.
[55] Dolan RD, Laird BJA, Klepstad P, et al. An exploratory study examining the relationship between performance status and systemic inflammation frameworks and cytokine profiles in patients with advanced cancer. Medicine (Baltimore), 2019, 98(37): e17019.
[56] Scott HR, McMillan DC, Crilly A, et al. The relationship between weight loss and interleukin 6 in non-small-cell lung cancer. British Journal of Cancer, 1996, 73(12): 1560-1562.
[57] Iwase S, Murakami T, Saito Y, et al. Steep elevation of blood interleukin-6 (IL-6) associated only with late stages of cachexia in cancer patients. Eur Cytokine Netw, 2004, 15(4): 312-316.
[58] Yeh KY, Li YY, Hsieh LL, et al. Analysis of the effect of serum interleukin-6 (IL-6) and soluble IL-6 receptor levels on survival of patients with colorectal cancer. Jpn J Clin Oncol, 2010, 40(6): 580-587.
[59] Vaughan VC, Martin P, Lewandowski PA. Cancer cachexia: impact, mechanisms and emerging treatments . J Cachexia Sarcopenia Muscle, 2013, 4(2): 95-109.
[60] Penet MF, Bhujwalla ZM. Cancer cachexia, recent advances, and future directions . Cancer J, 2015, 21(2): 117-122.
[61] Graziano F, Ruzzo A, Santini D, et al. Prognostic role of interleukin-1beta gene and interleukin-1 receptor antagonist gene polymorphisms in patients with advanced gastric cancer . J Clin Oncol, 2005, 23(10): 2339-2345.
[62] Inácio Pinto N, Carnier J, Oyama LM, et al. Cancer as a Proinflammatory Environment: Metastasis and Cachexia . Mediators Inflamm, 2015, 2015: 791060.
[63] Chang H, Kwon O, Shin MS, et al. Role of Angptl4/Fiaf in exercise-induced skeletal muscle AMPK activation . J Appl Physiol (1985), 2018, 125(3): 715-722.
[64] Neto NIP, Boldarine VT, Hachul ACL, et al. Association between ANGPTL-4 and the proinflammatory process in cancer cachexia patients. Oncotarget, 2019, 10(60): 6444-6455.
[65] Yang YH, Wang Y, Lam KS, et al. Suppression of the Raf/MEK/ERK signaling cascade and inhibition of angiogenesis by the carboxyl terminus of angiopoietin-like protein 4 . Arterioscler Thromb Vasc Biol, 2008, 28(5): 835-840.
[66] Galaup A, Cazes A, Le Jan S, et al. Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness . Proc Natl Acad Sci USA, 2006,103(49): 18721-18726.
[67] Sadeghi M, Keshavarz-Fathi M, Baracos V, et al. Cancer cachexia: Diagnosis, assessment, and treatment. Crit Rev Oncol Hematol, 2018, 127:91-104.
[68] Molfino A, Amabile MI, Giorgi A, et al. Investigational drugs for the treatment of cancer cachexia: a focus on phase I and phase II clinical trials. Expert Opin Investig Drugs, 2019, 28(8):733-740.
[69] Dev R, Wong A, Hui D, et al. The Evolving Approach to Management of Cancer Cachexia. Oncology (Williston Park). 2017, 31(1):23-32.
[70] Meng Q, Tan S, Jiang Y, et al. Post-discharge oral nutritional supplements with dietary advice in patients at nutritional risk after surgery for gastric cancer: A randomized clinical trial. Clin Nutr, 2021, 40(1):40-46.
[71] Lu S, Li Y, Shen Q, et al. Carnosol and its analogues attenuate muscle atrophy and fat lipolysis induced by cancer cachexia. J Cachexia Sarcopenia Muscle. 2021, 12(3):779-795.
[72] Chen X, Wu Y, Yang T, et al. Salidroside alleviates cachexia symptoms in mouse models of cancer cachexia via activating mTOR signalling. J Cachexia Sarcopenia Muscle, 2016, 7(2):225-232.

备注/Memo

备注/Memo:
基金项目 :国家自然科学基金青年项目(81803091) 作者简介 :韩 军,主治医师,医学博士,主要从事癌性恶病质的基础和临床研究。E-mail:han.jun@zs-hospital.sh.cn 共同第一作者 :萨思进,医学博士研究生,主要从事癌性恶病质的基础和临床研究。E-mail:15301050297 @fudan.edu.cn 通讯作者 :吴国豪,E-mail:profwugh@163.com
更新日期/Last Update: 1900-01-01