[1]王俊杰,谈善军,吴国豪.肠道菌群在癌性恶病质营养代谢及治疗中的作用[J].肠外与肠内营养杂志,2021,(01):49-54.[doi:DOI : 10.16151/j.1007-810x.2021.01.011]
 WANG Jun-jie,TAN Shan-jun,WU Guo-hao.The role of gut microbiota in the pathogenesis and treatment of cancer cachexia[J].PARENTERAL & ENTERAL NUTRITION,2021,(01):49-54.[doi:DOI : 10.16151/j.1007-810x.2021.01.011]
点击复制

肠道菌群在癌性恶病质营养代谢及治疗中的作用
分享到:

《肠外与肠内营养》杂志[ISSN:1007-810X/CN:32-1477/R]

卷:
期数:
2021年01期
页码:
49-54
栏目:
综述
出版日期:
2021-01-10

文章信息/Info

Title:
The role of gut microbiota in the pathogenesis and treatment of cancer cachexia
作者:
王俊杰谈善军吴国豪
复旦大学附属中山医院普通外科 上海市临床营养研究中心,上海200032
Author(s):
WANG Jun-jie TAN Shan-jun WU Guo-hao
Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
关键词:
恶病质 肿瘤 肠道菌群
Keywords:
Cachexia Cancer Gut microbiota
分类号:
R459.3,R730.54
DOI:
DOI : 10.16151/j.1007-810x.2021.01.011
文献标志码:
A
摘要:
癌性恶病质严重影响肿瘤病人短期和长期临床结局。近年来,肠道菌群在恶性肿瘤发生发展及治疗中的作用备受关注,为癌性恶病质的机制研究和临床防治积累了大量新的研究证据。肠道菌群参与了骨骼肌、脂肪组织、消化道、炎症反应、营养代谢等恶病质发生相关组织器官的病理生理过程,有望成为癌性恶病质防治的新靶点。
Abstract:
Cachexia has great impact on the short- and long-term outcomes of cancer patients. Recently, a large amount of evidence has suggested that gut microbiota plays a vital part in the pathogenesis and progression of cancer, providing new insights into the microbiota’s role in cancer cachexia. Studies have also shown that gut microbiota could affect the pathophysiological process related to the occurrence of cancer cachexia, such as skeletal muscle and adipose tissue metabolism, gastrointestinal function, inflammatory response and nutrition metabolism. In this review, we will discuss the role of gut microbiota in the development of cancer cachexia and its potential as an optional therapeutic target.

参考文献/References:


[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin,2018, 68(6): 394-424.
[2] 郑荣寿, 孙可欣, 张思维, 等 . 2015年中国恶性肿瘤流行情况分析 . 中华肿瘤杂志, 2019, 41(1): 19-28.
[3] Fearon K, Strasser F, Anker SD, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol, 2011, 12(5): 489-495.
[4] von Haehling S, Anker SD. Prevalence, incidence and clinical impact of cachexia: facts and numbers-update 2014. J Cachexia Sarcopenia Muscle, 2014, 5(4): 261-263.
[5] Ebner N, Anker SD, von Haehling S. Recent developments in the field of cachexia, sarcopenia, and muscle wasting: highlights from the 12th Cachexia Conference. J Cachexia Sarcopenia Muscle, 2020, 11(1): 274-285.
[6] Vaughan VC, Martin P, Lewandowski PA. Cancer cachexia: impact, mechanisms and emerging treatments. J Cachexia Sarcopenia Muscle, 2013, 4(2): 95-109.
[7] 吴国豪 . 癌性恶病质发生机制及防治对策 . 中国实用外科杂志, 2015, 35(1): 36-39.
[8] Thomas RM, Jobin C. Microbiota in pancreatic health and disease: the next frontier in microbiome research. Nat Rev Gastroenterol Hepatol, 2020, 17(1): 53-64.
[9] 罗 绰, 黄明君, 王一琳, 等 . 肠道菌群与结直肠癌研究进展 .肠外与肠内营养, 2019, 26(6): 377-381.
[10] Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA Cancer J Clin, 2017, 67 (4): 326-344.
[11] Murphy CL, O?Toole PW, Shanahan F. The Gut Microbiota in Causation, Detection, and Treatment of Cancer. Am J Gastroenterol, 2019, 114(7): 1036-1042.
[12] 盛 翔, 朱瑞娟, 李苏宜 . 肠道微生态与宫颈癌合并放射性肠损伤的临床研究 . 肠外与肠内营养, 2020, 27(2):78-83.
[13] Bindels LB, Beck R, Schakman O, et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model. PLoS One, 2012, 7 (6): e37971.
[14] Hooper LV, Wong MH, Thelin A, et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science, 2001, 291(5505): 881-884.
[15] Porporato PE. Understanding cachexia as a cancer metabolism syndrome. Oncogenesis, 2016, 5(2): e200.
[16] Peixoto da Silva S, Santos JMO, et al. Cancer cachexia and its pathophysiology: links with sarcopenia, anorexia and asthenia. J Cachexia Sarcopenia Muscle, 2020, 11(3):619-635.
[17] 徐兴伟 . 肠道菌群对免疫功能的影响和疾病研究的新进展 . 肠外与肠内营养, 2017, 24(2): 118-121.
[18] Puppa MJ, White JP, Sato S, et al. Gut barrier dysfunction in the Apc(Min/+ ) mouse model of colon cancer cachexia. Biochim Biophys Acta, 2011, 1812(12): 1601-1606.
[19] Schroeder BO, B?ckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med, 2016, 22(10): 1079-1089.
[20] Liu Y, Hou Y, Wang G, et al. Gut Microbial Metabolites of Aromatic Amino Acids as Signals in Host-Microbe Interplay. Trends Endocrinol Metab, 2020, 31(11):818-834.
[21] Husted AS, Trauelsen M, Rudenko O, et al. GPCR-Mediated Signaling of Metabolites. Cell Metab, 2017, 25(4): 777-796.
[22] Alvarez-Curto E, Milligan G. Metabolism meets immunity: The role of free fatty acid receptors in the immune system. Biochem Pharmacol, 2016, 114: 3-13.
[23] Mobraten K, Haugbro T, Karlstrom E, et al. Activation of the bile acid receptor TGR5 enhances LPS-induced inflammatory responses in a human monocytic cell line. J Recept Signal Transduct Res, 2015, 35(5): 402-409.
[24] Zhang D, Frenette PS. Cross talk between neutrophils and the microbiota. Blood, 2019, 133(20): 2168-2177.
[25] Blanton LV, Charbonneau MR, Salih T, et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science, 2016, 351(6275): 10.1126.
[26] Delzenne NM, Neyrinck AM, B?ckhed F, et al. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol, 2011, 7(11): 639-646.
[27] Wostmann BS, Larkin C, Moriarty A, et al. Dietary intake, energy metabolism, and excretory losses of adult male germfree Wistar rats. Lab Anim Sci, 1983, 33(1): 46-50.
[28] Semova I, Carten JD, Stombaugh J, et al. Microbiota Regulate Intestinal Absorption and Metabolism of Fatty Acids in the Zebrafish. Cell Host Microbe, 2012, 12(3): 277-288.
[29] Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 2006, 439(7075): 484-489.
[30] Shachar SS, Williams GR, Muss HB, et al. Prognostic value of sarcopenia in adults with solid tumours: A meta-analysis and systematic review. Eur J Cancer, 2016, 57: 58-67.
[31] Bindels LB, Delzenne NM. Muscle wasting: the gut microbiota as a new therapeutic target? . Int J Biochem Cell Biol, 2013, 45(10): 2186-2190.
[32] B?ckhed F, Manchester JK, Semenkovich CF, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A, 2007, 104(3): 979-984.
[33] Hawley JA. Microbiota and muscle highway - two way traffic. Nat Rev Endocrinol, 2020, 16(2): 71-72.
[34] Sakuma K, Aoi W, Yamaguchi A. Molecular mechanism of sarcopenia and cachexia: recent research advances. Pflugers Arch, 2017, 469(5-6): 573-591.
[35] Scheiman J, Luber JM, Chavkin TA, et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med, 2019, 25(7): 1104-1109.
[36] Okamoto T, Morino K, Ugi S, et al. Microbiome potentiates endurance exercise through intestinal acetate production. Am J Physiol Endocrinol Metab, 2019, 316(5): E956-E966.
[37] B?ckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A, 2004, 101(44): 15718-15723.
[38] K?ster A, Chao YB, Mosior M, et al. Transgenic angiopoietinlike (angptl)4 overexpression and targeted disruption of angptl4 and angptl3: regulation of triglyceride metabolism. Endocrinology, 2005, 146(11): 4943-4950.[39] Virtue AT, McCright SJ, Wright JM, et al. The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs. Sci Transl Med, 2019, 11(496): eaav1892.
[40] Argilés JM, Stemmler B, López-Soriano FJ, et al. Inter-tissue communication in cancer cachexia. Nat Rev Endocrinol, 2018, 15(1): 9-20.
[41] Chevalier C, Stojanovi? O, Colin DJ, et al. Gut Microbiota Orchestrates Energy Homeostasis during Cold. Cell, 2015, 163(6): 1360-1374.
[42] Poole DP, Godfrey C, Cattaruzza F, et al. Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterol Motil, 2010, 22(7): 814-25,e227-8.
[43] Trehan I, Goldbach HS, LaGrone LN, et al. Antibiotics as part of the management of severe acute malnutrition. N Engl J Med, 2013, 368(5): 425-435.
[44] 李 宁 . 肠道菌群紊乱与粪菌移植 . 肠外与肠内营养, 2014, 21 (4): 193-197.
[45] Chen D, Wu J, Jin D, et al. Fecal microbiota transplantation in cancer management: Current status and perspectives. Int J Cancer, 2019, 145(8): 2021-2031.
[46] Wang S, Xu M, Wang W, et al. Systematic Review: Adverse Events of Fecal Microbiota Transplantation. PLoS One, 2016, 11(8): e0161174.
[47] Hill C, Guarner F, Reid G, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol, 2014, 11(8): 506-514.
[48] Suez J, Zmora N, Segal E, et al. The pros, cons, and many unknowns of probiotics. Nat Med, 2019, 25(5): 716-729.
[49] Slavin J. Fiber and prebiotics: mechanisms and health benefits.Nutrients, 2013, 5(4): 1417-1435.
[50] Obermüller B, Singer G, Kienesberger B, et al. The Effects of Prebiotic Supplementation with OMNi-LOGiC(?) FIBRE on Fecal Microbiome, Fecal Volatile Organic Compounds, and Gut Permeability in Murine Neuroblastoma-Induced TumorAssociated Cachexia. Nutrients, 2020, 12(7): 2029.
[51] Pandey KR, Naik SR, Vakil BV. Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol, 2015, 52(12): 7577-7587.
[52] Seifi N, Safarian M, Nematy M, et al. Effects of synbiotic supplementation on energy and macronutrients homeostasis and muscle wasting of critical care patients: study protocol and a review of previous studies. Trials, 2020, 21(1): 221.
[53] 赵 成 . 肠道菌群研究促进膳食纤维的应用 . 肠外与肠内营养, 2019, 26(1): 8-9.
[54] Everard A, Lazarevic V, Derrien M, et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes,2011, 60(11): 2775-2786.
[55] Fabbiano S, Suárez-Zamorano N, Chevalier C, et al. Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements. Cell Metab, 2018, 28(6):907-921.

相似文献/References:

[1]张燕妮,谈善军,张知格,等.厌食症发病机制及防治对策[J].肠外与肠内营养杂志,2021,(03):178.[doi:10.16151/j]
 ZHANG Yan-ni,TAN Shan-jun,ZHANG Zhi-ge,et al.Pathogenesis and treatment of anorexia[J].PARENTERAL & ENTERAL NUTRITION,2021,(01):178.[doi:10.16151/j]
[2]杨谨成,王黎明,李彩云,等.肿瘤医院肝胆外科住院病人营养现状调查及模型预测[J].肠外与肠内营养杂志,2022,(06):321.[doi:10.16151/j.1007-810x.2022.06.001]
 YANG Jin-cheng,WANG Li-ming,LI Cai-yun,et al.Survey of inpatients' nutrition and model prediction in hepatobiliary surgery of cancer hospital[J].PARENTERAL & ENTERAL NUTRITION,2022,(01):321.[doi:10.16151/j.1007-810x.2022.06.001]

备注/Memo

备注/Memo:
基金项目 :国 家 自 然 科 学 基 金(81900484);中 国 博 士 后 科 学 基 金 资 助 项 目(2019M661370);上 海 市 青 年 科 技 英 才 扬 帆 计 划 (18YF1404700);上海市自然科学基金(19ZR1409100);上海市卫生健康系统重要薄弱学科建设计划 -临床营养学 (2019ZB0105) 作者简介 :王俊杰,医学博士研究生,主要从事外科营养与支持治疗。E-mail:dr.junjiewang@gmail.com 通讯作者 :吴国豪,E-mail:p
更新日期/Last Update: 1900-01-01