[1]盛 翔,朱瑞娟,李苏宜.肠道微生态与宫颈癌合并放射性肠损伤的临床研究[J].肠外与肠内营养杂志,2020,(02):78-83.[doi:10.16151/j.1007-810x.2020.02.004]
 SHENG Xiang,ZHU Rui-juan,LI Su-yi.Clinical study of intestinal microecology and intestinal radiation injury in cervical cancer patients[J].PARENTERAL & ENTERAL NUTRITION,2020,(02):78-83.[doi:10.16151/j.1007-810x.2020.02.004]
点击复制

肠道微生态与宫颈癌合并放射性肠损伤的临床研究
分享到:

《肠外与肠内营养》杂志[ISSN:1007-810X/CN:32-1477/R]

卷:
期数:
2020年02期
页码:
78-83
栏目:
论著
出版日期:
2020-03-10

文章信息/Info

Title:
Clinical study of intestinal microecology and intestinal radiation injury in cervical cancer patients
作者:
盛 翔 1朱瑞娟 2李苏宜 1
1.安徽医科大学附属省立医院,安徽合肥 230031;2.慕恩(广州)生物科技有限公司,广东广州 510530
Author(s):
SHENG Xiang1 ZHU Rui-juan2 LI Su-yi1
1.Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei 230031, Anhui, China;2.Moon Guangzhou Biotech Co.ltd, Guangzhou 510530, Guangdong, China
关键词:
宫颈癌 放射性肠损伤 16S rRNA基因测序 肠道微生态 KEGG代谢通路
Keywords:
Cervical cancer Intestinal radiation injury 16S rRNA gene sequencing Intestinal microecologyKEGG pathway
分类号:
R372,R737.33
DOI:
10.16151/j.1007-810x.2020.02.004
文献标志码:
A
摘要:
目的:探讨肠道微生态结构变化与宫颈癌放疗致放射性肠损伤的相关性。 方法:以RTOG/EORTC 晚期放射损伤分级为依据,将纳入研究34例宫颈癌放疗后病人肠道损伤分为0 ~ 4级,将入组病人分为放射性肠损 伤组(RG)和无放射性肠损伤组即健康组(HG)。利用Illumina MiSeq高通量测序平台对粪便标本中肠道微生物的 16S rRNA 基因 v4 区序列进行测序,使用 QIIME 2.0 处理测序数据并分析肠道微生物丰富度和多样性,并通过 PICRUSt预测了肠道微生物群的功能特征。 结果:两组在肠道微生物丰富度、多样性均无显著性差异(P > 0.05)。 在菌群组成上,筛选出了 5 个与放射性肠损伤最为相关的菌属,分别为 Acidaminococcus(氨基酸球菌属)、 Pyramidobacter、Dialister(小杆菌属)、Megasphaera(巨球型菌属),f-Dethiosulfovibrionaceae uncl;在功能代谢上,发 现RG肠道微生物群代谢类型出现了适应厌氧环境代谢途径和致病菌相关代谢途径上调的现象。 结论:盆腔放 射治疗直接或间接引起肠道粘膜受损、修复功能减弱和肠道抑菌能力降低,继而引起肠道微生态失衡。
Abstract:
Objective: To investigate the correlation between intestinal microecological changes and intestinal radiation injury caused by cervical cancer radiotherapy. Methods: Based on RTOG/EORTC late radiation morbidity scoring criteria,the intestinal lesions of 34 patients with cervical cancer after radiotherapy were graded into 0~4. Patients enrolled in the study were divided into Radiation-Induced Intestinal Injury Group (RG) and Health Group (HG). The Illumina MiSeq high-throughput sequencing platform was used to sequence the 16S rRNA gene v4 region of intestinal microbes in fecal specimens, using QIIME 2.0 to process sequencing data and analyze intestinal microbial richness and diversity, and predicting the functional characteristics of intestinal microbiota by PICRUSt. Results: There was no significant difference in intestinal microbial richness and diversity between the two groups (P > 0.05). In the composition of the flora, five genus most related to intestinal radiation injury were screened, namely Acidaminococcus, Pyramidobacter, Dialister, Megasphaera, f-Dethiosulfovibrionaceae uncl. In terms of functional metabolism, it was found that the metabolic type of intestinal microbiota in the Radiation-Induced Intestinal Injury Group (RG) showed an up regulation of metabolic pathways adapted to anaerobic environment and metabolic pathways associated with pathogenic bacteria. Conclusion: Pelvic radiation therapy directly or indirectly causes intestinal mucosal damage, reduced repair function and decreased intestinal bacteriostatic ability, which in turn causes intestinal micro-ecological imbalance.

参考文献/References:


[1] Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries.The Lancet, 2018, 391(10125): 1023-1075.
[2] Zeng H, Chen W, Zheng R, et al. Changing cancer survival in China during 2003–15: a pooled analysis of 17 population-based cancer registries. Lancet Glob Health, 2018, 6(5): e555-e567.
[3] Sturdza A, Potter R, Fokdal LU, et al. Image guided brachytherapy in locally advanced cervical cancer: Improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study. Radiother Oncol, 2016, 120(3): 428-433.
[4] Yang D, Zhang W, Liu Y, et al. Singlecell wholegenome sequencing identifies human papillomavirus integration in cervical tumour cells prior to and following radiotherapy. Oncol Lett, 2018, 15(6): 9633-9640.
[5] Jadon R, Higgins E, Hanna L, et al. A systematic review of dose volume predictors and constraints for late bowel toxicity following pelvic radiotherapy. Radiat Oncol, 2019, 14(1): 57.
[6] 张 坚, 朱维铭, 龚剑峰, 等. 基因修饰骨髓间充质干细胞移植对放射性肠损伤的修复作用 . 肠外与肠内营养, 2008, 15(3):143-147.
[7] 单信芝, 韩 磊, 马爱国, 等. β-胡萝卜素对急性放射损伤大鼠小肠黏膜结构和屏障功能的影响 . 肠外与肠内营养, 2009, 16(6): 346-350.
[8] Makki K, Deehan EC, Walter J, et al. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe,2018, 23(6): 705-715.
[9] Crawford PA, Gordon JI. Microbial regulation of intestinal radiosensitivity. Proc Natl Acad Sci U S A, 2005, 102(37): 13254-13259.
[10] Johnson LB, Riaz AA, Adawi D, et al. Radiation enteropathy and leucocyte-endothelial cell reactions in a refined small bowel model. BMC Surg, 2004, 4: 10.
[11] Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol, 2019, 37(8): 852-857.
[12] Callahan BJ, Mcmurdie PJ, Rosen MJ, et al. DADA2: High resolution sample inference from Illumina amplicon data. Nat Methods, 2016, 13(7): 581-583.
[13] Props R, Kerckhof FM, Rubbens P, et al. Absolute quantification of microbial taxon abundances. ISME J, 2017, 11(2): 584-587.
[14] Kwak MS, Cha JM, Shin HP, et al. Metagenomic Biomarker for Upper Gastrointestinal Tract Involvement in Patients with Crohn's Disease. Gut Liver, 2019, 13.
[15] Chao A, Chiu CH, Hsieh TC, et al. Rarefaction and extrapolation of phylogenetic diversity. Methods Ecol Evol, 2015, 6(4):380-388.
[16] Xu Y, Xie Z, Wang H, et al. Bacterial Diversity of Intestinal Microbiota in Patients with Substance Use Disorders Revealed by 16S rRNA Gene Deep Sequencing. Sci Rep, 2017, 7(1): 3628.
[17] Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci, 2020, 29(1): 28-35.
[18] Ohland CL, Jobin C. Microbial activities and intestinal homeostasis: A delicate balance between health and disease. Cell Mol Gastroenterol Hepatol, 2015, 1(1): 28-40.
[19] Greenhalgh K, Meyer KM, Aagaard KM, et al. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environ Microbiol, 2016, 18(7): 2103-2116.
[20] Ricaboni D, Mailhe M, Benezech A, et al. 'Acidaminococcus timonensis' sp. nov. and 'Acidaminococcus massiliensis' sp. nov. isolated from human gut. New Microbes New Infect, 2017, 15:46-48.
[21] Lopetuso LR, Petito V, Graziani C, et al. Gut Microbiota in Health, Diverticular Disease, Irritable Bowel Syndrome, and Inflammatory Bowel Diseases: Time for Microbial Marker of Gastrointestinal Disorders. Dig Dis, 2018, 36(1): 56-65.
[22] Rios-Covian D, Ruas-Madiedo P, Margolles A, et al. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front Microbiol, 2016, 7: 185.
[23] Litvak Y, Byndloss MX, B?umler AJ. Colonocyte metabolism shapes the gut microbiota. Science, 2018, 362(6418): eaat9076.
[24] Kudo F, Eguchi T. Biosynthetic enzymes for the aminoglycosides butirosin and neomycin. Methods Enzymol, 2009, 459: 493-519.
[25] Schnuck JK, Sunderland KL, Kuennen MR, et al. Characterization of the metabolic effect of beta-alanine on markers of oxidative metabolism and mitochondrial biogenesis in skeletal muscle. J Exerc Nutrition Biochem, 2016, 20(2): 34-41.

备注/Memo

备注/Memo:
作者简介 :盛 翔,医学硕士研究生,从事肿瘤营养与支持治疗。E-mail:516145764@qq.com 通讯作者 :李苏宜,E-mail:njlisuyi@sina.com
更新日期/Last Update: 1900-01-01