[1]石培洁,冯 健,胡 健,等.基于“肠-肌轴”的营养干预在 ICU 获得性衰弱治疗的研究进展[J].肠外与肠内营养杂志,2023,(04):249-253.[doi:DOI : 10.16151/j.1007-810x.2023.04.010]
 SHI Pei-jie,FENG Jian,HU Jian,et al.Progress of nutritional interventions based on the "gut-muscle axis" inthe treatment of acquired weakness in the ICU[J].PARENTERAL & ENTERAL NUTRITION,2023,(04):249-253.[doi:DOI : 10.16151/j.1007-810x.2023.04.010]
点击复制

基于“肠-肌轴”的营养干预在 ICU 获得性衰弱治疗的研究进展()
分享到:

《肠外与肠内营养》杂志[ISSN:1007-810X/CN:32-1477/R]

卷:
期数:
2023年04期
页码:
249-253
栏目:
综述
出版日期:
2023-08-10

文章信息/Info

Title:
Progress of nutritional interventions based on the "gut-muscle axis" inthe treatment of acquired weakness in the ICU
作者:
石培洁 1冯 健 2胡 健 2李福祥 2林 宁 1
中国人民解放军西部战区总医院,1. 营养科,2. 重症医学科,四川成都 610083
Author(s):
SHI Pei-jie1 FENG Jian2 HU Jian2 LI Fu-xiang2 LIN Ning1
1.Department of Nutrition;2.Department of Critical Medicine, Western Theater General Hospital ofthe Chinese people’s Liberation Armyu,Chengdu 610083, Sichuan,China
关键词:
ICU 获得性衰弱 肠道菌群 益生菌 菌群移植 营养治疗
Keywords:
ICU acquired weakness Intestinal flora Probiotics Flora transplantation Nutritional therapy
分类号:
R459.3,R574
DOI:
DOI : 10.16151/j.1007-810x.2023.04.010
文献标志码:
A
摘要:
ICU 获得性衰弱(ICUAW)是在危重症期间发生的、不能用危重症以外的其他原因解释,临床表现为脱机延长、轻瘫或四肢瘫、反射减弱及肌萎缩的一种病症,其影响因素较多且没有临床干预的相关指南。肠道是机体最大的“免疫器官”,危重症病人肠道菌群较正常时发生巨大的变化,随着对“肠-肌轴”的研究,肠道菌群对肌肉的作用逐渐被大家认知,本文将从肠道微生态与 ICUAW 的发生,以及近年来国内外通过肠道菌群干预治疗 ICUAW的治疗策略出发进行总结,为之后 ICUAW 的治疗提供思路。
Abstract:
Intensive care unit acquired weakness (ICAW) is a condition that occurs during critical illness andcannot be explained by anything other than critical illness, with clinical manifestations of prolonged weaning, paresis ortetraplegia, reduced reflexes and muscular atrophy. The intestinal tract is the largest "immune organ" of the body, and theintestinal flora of critically ill patients has changed greatly compared to normal. With the study of the "gut-muscle axis",the role of intestinal flora on muscle is gradually recognized. This paper will discuss the relationship between intestinalmicroecology and ICUAW. It also summarizes the treatment strategies of ICUAW through intestinal flora intervention athome and abroad in recent years, and provides ideas for the treatment of ICUAW in the future.

参考文献/References:


[1] Hermans G, Van den Berghe G. Clinical review: intensive care unit acquired weakness. Crit Care, 2015,19(1):274.
[2] Vanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness. Intensive Care Med, 2020,46(4):637-653.
[3] Piva S, Fagoni N, Latronico N. Intensive care unit-acquiredweakness: unanswered questions and targets for future research.F1000Res, 2019,8:508.
[4] Thabet Mahmoud A, Tawfik MAM, Abd El Naby SA, et al.Neurophysiological study of critical illness polyneuropathy andmyopathy in mechanically ventilated children; additional aspectsin paediatric critical illness comorbidities. Eur J Neurol, 2018, 25(7):991.
[5] Dres M, Dubé BP, Mayaux J, et al. Coexistence and Impact of Limb Muscle and Diaphragm Weakness at Time of Liberationfrom Mechanical Ventilation in Medical Intensive Care UnitPatients. Am J Respir Crit Care Med, 2017, 195(1):57-66.
[6] Parry SM, Puthucheary ZA. The impact of extended bed rest on the musculoskeletal system in the critical care environment.Extrem Physiol Med, 2015,4:16.
[7] Hanna JS. Sarcopenia and critical illness: a deadly combination inthe elderly. JPEN J Parenter Enteral Nutr, 2015,39(3):273-281.
[8] Kress JP, Hall JB. ICU-acquired weakness and recovery fromcritical illness. N Engl J Med, 2014,370(17):1626-1635.
[9] Fan E, Cheek F, Chlan L, et al. An official American ThoracicSociety Clinical Practice guideline: the diagnosis of intensivecare unit-acquired weakness in adults. Am J Respir Crit CareMed, 2014,190(12):1437-1446.
[10] Bindels LB, Delzenne NM. Muscle wasting: the gut microbiota asa new therapeutic target?. Int J Biochem Cell Biol, 2013, 45(10):2186-2190.
[11] Lin R, Liu W, Piao M, et al. A review of the relationship betweenthe gut microbiota and amino acid metabolism. Amino Acids,2017, 49(12):2083-2090.
[12] Malavaki CJ, Sakkas GK, Mitrou GI, et al. Skeletal muscleatrophy: disease-induced mechanisms may mask disuse atrophy. JMuscle Res Cell Motil, 2015,36(6):405-421.
[13] Yan J, Herzog JW, Tsang K, et al. Gut microbiota induce IGF-1and promote bone formation and growth. Proc Natl Acad SciUSA, 2016,113(47):E7554-E7563.
[14] Cheng CS, Wei HK, Wang P, et al. Early intervention with faecalmicrobiota transplantation: an effective means to improve growthperformance and the intestinal development of suckling piglets.Animal, 2019, 13(3):533-541.
[15] Hills RD, Pontefract BA, Mishcon HR, et al. Gut Microbiome:Profound Implications for Diet and Disease. Nutrients, 2019, 11(7):1613.
[16] Shimizu K, Ojima M, Ogura H. Gut Microbiota and Probiotics/Synbiotics for Modulation of Immunity in Critically Ill Patients.Nutrients, 2021,13(7):2439.
[17] Shimizu K, Ogura H, Goto M, et al. Altered gut flora andenvironment in patients with severe SIRS. J Trauma, 2006,60(1):126-133.
[18] Yeoh YK, Zuo T, Lui GC, et al. Gut microbiota compositionreflects disease severity and dysfunctional immune responses inpatients with COVID-19. Gut, 2021,70(4):698-706.
[19] Willing BP, Van Kessel AG. Intestinal microbiota differentiallyaffect brush border enzyme activity and gene expression in theneonatal gnotobiotic pig. J Anim Physiol Anim Nutr (Berl),2009,93(5):586-595.
[20] Kozakova H, Kolinska J, Lojda Z, et al. Effect of bacterialmonoassociation on brush-border enzyme activities in ex-germfree piglets: comparison of commensal and pathogenicEscherichia coli strains. Microbes Infect, 2006, 8(11):2629-2639.
[21] Barnieh FM, Loadman PM, Falconer RA. Is tumour-expressedaminopeptidase N (APN/CD13) structurally and functionallyunique? Biochim Biophys Acta Rev Cancer, 2021, 1876(2):188641.
[22] Wang L, Zhang X, Wu G, et al. Streptococcus pneumoniaeaminopeptidase N contributes to bacterial virulence and elicits astrong innate immune response through MAPK and PI3K/AKTsignaling. J Microbiol, 2020,58(4):330-339.
[23] Enoki Y, Watanabe H, Arake R, et al. Indoxyl sulfate potentiatesskeletal muscle atrophy by inducing the oxidative stress-mediatedexpression of myostatin and atrogin-1. Sci Rep, 2016,6:32084.
[24] Diether NE, Willing BP. Microbial Fermentation of DietaryProtein: An Important Factor in Diet ? Microbe ? Host Interaction.Microorganisms, 2019,7(1):19.
[25] Wyczalkowska-Tomasik A, Czarkowska-Paczek B, GiebultowiczJ, et al. Age-dependent increase in serum levels of indoxylsulphate and p-cresol sulphate is not related to their precursors:Tryptophan and tyrosine. Geriatr Gerontol Int, 2017,17(6):1022-1026.
[26] Dallas DC, Sanctuary MR, Qu Y, et al. Personalizing proteinnourishment. Crit Rev Food Sci Nutr, 2017,57(15):3313-3331.
[27] Janeiro MH, Ramírez MJ, Milagro FI, et al. Implication ofTrimethylamine N-Oxide (TMAO) in Disease: PotentialBiomarker or New Therapeutic Target. Nutrients, 2018, 10(10):1398.
[28] Liu Y, Dai M. Trimethylamine N-Oxide Generated by the GutMicrobiota Is Associated with Vascular Inflammation: NewInsights into Atherosclerosis. Mediators Inflamm, 2020, 2020:4634172.
[29] Chen K, Zheng X, Feng M, et al. Gut Microbiota-DependentMetabolite Trimethylamine N-Oxide Contributes to CardiacDysfunction in Western Diet-Induced Obese Mice. Front Physiol,2017,8:139.
[30] Ma G, Pan B, Chen Y, et al. Trimethylamine N-oxide inatherogenesis: impairing endothelial self-repair capacity andenhancing monocyte adhesion. Biosci Rep, 2017, 37(2):BSR20160244.
[31] Liu X, Shao Y, Tu J, et al. Trimethylamine-N-oxide-stimulatedhepatocyte-derived exosomes promote inflammation andendothelial dysfunction through nuclear factor-kappa B signaling.Ann Transl Med, 2021,9(22):1670.
[32] 高 月,李梦璇,陈松林,等 . 益生菌对危重症病人预后影响的Meta 分析 . 肠外与肠内营养,2022,29(3):139-145.
[33] Salleh RM, Kuan G, Aziz MNA, et al. Effects of Probiotics on Anxiety, Stress, Mood and Fitness of Badminton Players.Nutrients, 2021,13(6):1783.
[34] Prokopidis K, Giannos P, Kirwan R,et al. Impact of probiotics onmuscle mass, muscle strength and lean mass: a systematic reviewand meta-analysis of randomized controlled trials. J CachexiaSarcopenia Muscle, 2023,14(1):30-44.
[35] Ni Y, Yang X, Zheng L, et al. Lactobacillus and BifidobacteriumImproves Physiological Function and Cognitive Ability in AgedMice by the Regulation of Gut Microbiota. Mol Nutr Food Res,2019,63(22):e1900603.
[36] Chen LH, Chang SS, Chang HY, et al. Probiotic supplementationattenuates age-related sarcopenia via the gut-muscle axis inSAMP8 mice. J Cachexia Sarcopenia Muscle, 2022, 13(1):515-531.
[37] Chen YM, Wei L, Chiu YS, et al. Lactobacillus plantarumTWK10 Supplementation Improves Exercise Performance andIncreases Muscle Mass in Mice. Nutrients, 2016,8(4):205.
[38] Lahiri S, Kim H, Garcia-Perez I, et al. The gut microbiotainfluences skeletal muscle mass and function in mice. Sci TranslMed, 2019,11(502):eaan5662.
[39] Bodine SC, Latres E, Baumhueter S, et al. Identification ofubiquitin ligases required for skeletal muscle atrophy. Science,2001,294(5547):1704-1708.
[40] B?ckhed F, Manchester JK, Semenkovich CF, et al. Mechanismsunderlying the resistance to diet-induced obesity in germ-freemice. Proc Natl Acad Sci USA, 2007,104(3):979-984.
[41] Valentino TR, Vechetti IJ, Mobley CB, et al. Dysbiosis of the gutmicrobiome impairs mouse skeletal muscle adaptation toexercise. J Physiol, 2021,599(21):4845-4863.
[42] Hsu YJ, Chiu CC, Li YP, et al. Effect of intestinal microbiota onexercise performance in mice. J Strength Cond Res, 2015, 29(2):552-558.
[43] Nay K, Jollet M, Goustard B, et al. Gut bacteria are critical foroptimal muscle function: a potential link with glucosehomeostasis. Am J Physiol Endocrinol Metab, 2019,317(1):E158-E171.
[44] Okamoto T, Morino K, Ugi S, et al. Microbiome potentiatesendurance exercise through intestinal acetate production. Am JPhysiol Endocrinol Metab,2019,316(5):E956-E966.
[45] Qi R, Sun J, Qiu X, et al. The intestinal microbiota contributes tothe growth and physiological state of muscle tissue in piglets. SciRep,2021,11(1):11237.
[46] Kim KH, Chung Y, Huh JW, et al. Gut microbiota of the youngameliorates physical fitness of the aged in mice. Microbiome,2022,10(1):238.
[47] Chen H, Xu C, Zhang F, et al. The gut microbiota attenuatesmuscle wasting by regulating energy metabolism inchemotherapy-induced malnutrition rats. Cancer ChemotherPharmacol,2020,85(6):1049-1062.
[48] Cibulková I, ?eho?ová V, Hajer J, et al. Fecal MicrobialTransplantation in Critically Ill Patients-Structured Review andPerspectives. Biomolecules, 2021,11(10):1459.
[49] Alagna L, Haak BW, Gori A. Fecal microbiota transplantation inthe ICU: perspectives on future implementations. Intensive CareMed, 2019,45(7):998-1001.
[50] Marttinen M, Ala-Jaakkola R, Laitila A, et al. Gut Microbiota,Probiotics and Physical Performance in Athletes and PhysicallyActive Individuals. Nutrients, 2020, 12(10):2936.
[51] Monda V, Villano I, Messina A, et al. Exercise Modifies the GutMicrobiota with Positive Health Effects. Oxid Med Cell Longev,2017,2017:3831972.
[52] de Sire A, de Sire R, Petito V,et al. Gut-Joint Axis: The Role ofPhysical Exercise on Gut Microbiota Modulation in Older Peoplewith Osteoarthritis. Nutrients, 2020,12(2):574.
[53] Munukka E, Ahtiainen JP, Puigbó P, et al. Six-Week EnduranceExercise Alters Gut Metagenome That Is not Reflected inSystemic Metabolism in Over-weight Women. Front Microbiol,2018, 9:2323.
[54] Jollet M, Nay K, Chopard A, et al. Does Physical InactivityInduce Significant Changes in Human Gut Microbiota? NewAnswers Using the Dry Immersion Hypoactivity Model.Nutrients, 2021 ,13(11):3865.
[55] Shi J, Wang Y, He J, et al. Intestinal microbiota contributes tocolonic epithelial changes in simulated microgravity mousemodel. FASEB J, 2017,31(8):3695-3709.
[56] Moore TM, Terrazas A, Strumwasser AR, et al. Effect ofvoluntary exercise upon the metabolic syndrome and gutmicrobiome composition in mice. Physiol Rep, 2021, 9(21):e15068.
[57] Matsumoto M, Inoue R, Tsukahara T, et al. Voluntary runningexercise alters microbiota composition and increases n-butyrateconcentration in the rat cecum. Biosci Biotechnol Biochem, 2008,72(2):572-576.
[58] Zanders L, Kny M, Hahn A, et al. Sepsis induces interleukin 6,gp130/JAK2/STAT3, and muscle wasting. J Cachexia SarcopeniaMuscle, 2022,13(1):713-727.
[59] Liu Y, Wang D, Li T, et al. The role of NLRP3 inflammasome ininflammation-related skeletal muscle atrophy. Front Immunol,2022,13:1035709.
[60] Okamoto T, Morino K, Ugi S, et al. Microbiome potentiatesendurance exercise through intestinal acetate production. Am JPhysiol Endocrinol Metab. 2019,316(5):E956-E966.
[61] Tang G, Du Y, Guan H, et al. Butyrate ameliorates skeletalmuscle atrophy in diabetic nephropathy by enhancing gut barrierfunction and FFA2-mediated PI3K/Akt/mTOR signals. Br JPharmacol, 2022,179(1):159-178.
[62] 司原成,任晨晨,康朝霞,等 . 肠道短链脂肪酸与单纯性肥胖症形成的关系及其机制 . 肠外与肠内营养,2022,29(2):121-125.

相似文献/References:

[1]方 淼.膳食纤维之于肿瘤:诱发还是预防[J].肠外与肠内营养杂志,2019,(01):24.[doi:10.16151/j.1007-810x.2019.01.011]
[2]罗 绰,等.肠道菌群与结直肠癌研究进展[J].肠外与肠内营养杂志,2019,(06):377.[doi:10.16151/j.1007-810x.2019.06.013]
 LUO Chuo,HUANG Ming-jun,WANG Yi-lin,et al.Advances in relation of intestinal flora and colorectal cancer[J].PARENTERAL & ENTERAL NUTRITION,2019,(04):377.[doi:10.16151/j.1007-810x.2019.06.013]
[3]司原成,任晨晨,康朝霞,等.肠道短链脂肪酸与单纯性肥胖症形成的关系及其机制[J].肠外与肠内营养杂志,2022,(02):121.[doi:DOI : 10.16151/j.1007-810x.2022.02.012]
 SI Yuan-cheng,REN Chen-chen,KANG Zhao-xia,et al.The formation relationship and mechanism between intestinal short chain fatty acids and simple obesity[J].PARENTERAL & ENTERAL NUTRITION,2022,(04):121.[doi:DOI : 10.16151/j.1007-810x.2022.02.012]
[4]尹天翊,郝占西,王国盼,等.益生元改善慢性代谢性疾病的研究进展[J].肠外与肠内营养杂志,2022,(04):237.[doi:10.16151/j.1007-810x.2022.04.008]
 YIN Tian-yi,HAO Zhan-xi,WANG Guo-pan,et al.Research progress of prebiotics in improving chronic metabolic diseases[J].PARENTERAL & ENTERAL NUTRITION,2022,(04):237.[doi:10.16151/j.1007-810x.2022.04.008]
[5]吴冰悦,赵武杰,贾漪涛.后生元的临床应用价值及前景展望[J].肠外与肠内营养杂志,2022,(04):242.[doi:10.16151/j.1007-810x.2022.04.009]
 WU Bing-yue,ZHAO Wu-jie,JIA Yi-tao.The clinical application value and prospect of postbiotics[J].PARENTERAL & ENTERAL NUTRITION,2022,(04):242.[doi:10.16151/j.1007-810x.2022.04.009]
[6]唐玉秀,韦 瑶,金 钧.肠-肺轴以及粪菌移植在脓毒症中的作用[J].肠外与肠内营养杂志,2023,(03):179.[doi:10.16151/j.1007-810x.2023.03.010]
 TANG Yu-xiu,WEI Yao,JIN Jun.Function of gut-lung axis and fecal bacteria transplantation in sepsis[J].PARENTERAL & ENTERAL NUTRITION,2023,(04):179.[doi:10.16151/j.1007-810x.2023.03.010]
[7]贾 茹,魏世杰,陈文华,等.艾司奥美拉唑对大鼠肠道菌群结构组成的影响[J].肠外与肠内营养杂志,2023,(06):375.[doi:DOI : 10.16151/j.1007-810x.2023.06.010]
 JIA Ru,WEI Shi-jie,CHEN Wen-hua,et al.Effect of esomeprazole on intestinal microbiota structure and composition in rats[J].PARENTERAL & ENTERAL NUTRITION,2023,(04):375.[doi:DOI : 10.16151/j.1007-810x.2023.06.010]
[8]王显云,司原成,高璐琪,等.从肠道微生物源性细胞外囊泡角度探究电针对营养型肥胖小鼠肠道菌群结构及功能的影响[J].肠外与肠内营养杂志,2024,(02):65.[doi:DOI : 10.16151/j.1007-810x.2024.02.001]
 WANG Xian-yun,SI Yuan-cheng,GAO Lu-qi,et al.Analyzing the impact of electroacupuncture on the structure and function of gutmicrobiota by using microbiota-derived extracellular vesicles in high-fat di‐et-induced obesity mice[J].PARENTERAL & ENTERAL NUTRITION,2024,(04):65.[doi:DOI : 10.16151/j.1007-810x.2024.02.001]
[9]季红敏,李秀川,刘春芳,等.乳腺癌病人化疗期间口服益生菌制剂对肠道菌群和认知功能障碍的影响[J].肠外与肠内营养杂志,2024,(02):92.[doi:DOI : 10.16151/j.1007-810x.2024.02.005]
 JI Hong-min,LI Xiu-chuan,LIU Chun-fang,et al.Effects of oral probiotics during chemotherapy on gut microbiota and cognitivedysfunction in breast cancer patients[J].PARENTERAL & ENTERAL NUTRITION,2024,(04):92.[doi:DOI : 10.16151/j.1007-810x.2024.02.005]
[10]张润南,赵中华,李亚桐,等.肠道微生态改变对肝硬化的影响研究进展[J].肠外与肠内营养杂志,2025,(01):54.[doi:10.16151/j.1007-810x.2025.01.009]
 ZHANG Run-nan,ZHAO Zhong-hua,LI Ya-tong,et al.Research progress in the effects of alterations in intestinal microecology on liver cirrhosis[J].PARENTERAL & ENTERAL NUTRITION,2025,(04):54.[doi:10.16151/j.1007-810x.2025.01.009]

备注/Memo

备注/Memo:
基金项目 :西部战区总医院多学科联合攻关课题“ICU 获得性衰弱的综合防治策略研究(KY2019006)”;四川省干部保健课题(川干研2021-1303)作者简介 :石培洁,医师,医学硕士,主要研究 ICUAW 的营养治疗。E-mail:1104179728@qq.com通讯作者 :林 宁,E-mail:helenmedic@yeah.net
更新日期/Last Update: 1900-01-01